博客
关于我
Python实战演练之数据过滤
阅读量:734 次
发布时间:2019-03-22

本文共 794 字,大约阅读时间需要 2 分钟。

数据过滤与管道优化

上章回顾

从前一章导出的数据表中发现存在price == None的情况。这部分数据对应免费课程,并非我们目标爬取的内容。为确保数据完整,需对此进行过滤。

開 啟 EducsdnPipeline

在Scrapy的settings配置中,啟用EducsdnPipeline。該 Pipeline需置位 من Backbone,以便其後續的MysqlPipeline能正確接受過濕之後的數據.

Pipeline 定義

更新ITEM_PIPELINES設定如下:

ITEM_PIPELINES = {    'educsdn.pipelines.EducsdnPipeline': 300,    'educsdn.pipelines.MysqlPipeline': 301,}

設定方式指示了EducsdnPipeline應負責數據 προ靜過濕處理。

Pipeline 重寫

重定義EducsdnPipeline,新增如下功能:

import arcpyfrom scrapy.exceptions import DropItemclass EducsdnPipeline(object):    def process_item(self, item, spider):        if item['price'] is None:            raise DropItem("價值為NONE,移除此資料")        return item

此模式為МysqlPipeline不變,並保持原有設定。

清 確 表 中數據

實施以上變更之後،重新從終端執行:

educsdn $ scrapy crawl courses

此操作將僅říz禁那些price == None 的數據。

通過這些最佳實踪措施,可以有效保障爬取數據的完整性,避免無效數據存儲。

转载地址:http://lvggz.baihongyu.com/

你可能感兴趣的文章
mysql 复杂查询_mysql中复杂查询
查看>>
mYSQL 外键约束
查看>>
mysql 多个表关联查询查询时间长的问题
查看>>
mySQL 多个表求多个count
查看>>
mysql 多字段删除重复数据,保留最小id数据
查看>>
MySQL 多表联合查询:UNION 和 JOIN 分析
查看>>
MySQL 大数据量快速插入方法和语句优化
查看>>
mysql 如何给SQL添加索引
查看>>
mysql 字段区分大小写
查看>>
mysql 字段合并问题(group_concat)
查看>>
mysql 字段类型类型
查看>>
MySQL 字符串截取函数,字段截取,字符串截取
查看>>
MySQL 存储引擎
查看>>
mysql 存储过程 注入_mysql 视图 事务 存储过程 SQL注入
查看>>
MySQL 存储过程参数:in、out、inout
查看>>
mysql 存储过程每隔一段时间执行一次
查看>>
mysql 存在update不存在insert
查看>>
Mysql 学习总结(86)—— Mysql 的 JSON 数据类型正确使用姿势
查看>>
Mysql 学习总结(87)—— Mysql 执行计划(Explain)再总结
查看>>
Mysql 学习总结(88)—— Mysql 官方为什么不推荐用雪花 id 和 uuid 做 MySQL 主键
查看>>